NEWSLETTER SUBSCRIBE

Catalytic transfer hydrogenolysis of organosolv lignin using B-containing FeNi alloyed catalysts

In this work, FeB, NiB, and FeNiB nanomaterials were examined as catalysts for catalytic transfer hydrogenolysis (CTH) using supercritical ethanol (sc-EtOH) as the hydrogen donor and reaction solvent. The earth-abundant alloys were synthesized using simple aqueous chemical reductions and characterized using ICP-OES, XRD, and STEM-EDS. Using acetophenone to model the desired catalytic reactivity, FeNiB was identified as having superior reactivity (74% conversion) and selectivity for complete deoxygenation to ethylbenzene (84%) when compared to the monometallic materials. Given its high reactivity and selectivity for deoxygenation over ring saturation, FeNiB was screened as a lignin valorization catalyst. FeNiB mediates deoxygenation of aliphatic hydroxyl and carbonyls in organosolv lignin via CTH in sc-EtOH. A combination of gel permeation chromatography, GC/MS, and NMR spectroscopy was used to demonstrate the production of a slate of monomeric phenols with intact deoxygenated aliphatic side chains. In total, these results highlight the utility of CTH for the valorization of biorefinery-relevant lignin using an inexpensive, earth-abundant catalyst material and a green solvent system that can be directly derived from the polysaccharide fraction of lignocellulosic biomass.

» Author: Yagya N. Regmi, Jeffrey K. Mann, James R. McBride, Jingming Tao, Craig E. Barnes, Nicole Labbé, Stephen C. Chmely

» Reference: Catalysis Today, Volume 302

» Publication Date: 15/03/2018

» More Information

« Go to Technological Watch




This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement N° 690103