NEWSLETTER SUBSCRIBE

PATENTS
 

TECHNICAL ARTICLES

LAWS
 

EVENTS
 

OFFERS & DEMANDS

STANDARDS
 

GRANTS
 

NEWS
 

Nitrification and denitrification processes for mitigation of nitrous oxide from waste water treatment plants for biovalorization: challenges and opportunities

Nitrous oxide (N2O) is a potent greenhouse gas. Even though its emissions is much lesser than CO2 but its global warming potential (GWP) is 298 times more than CO2. N2O emissions from wastewater treatment plants was caused due to incomplete nitrification or incomplete denitrification catalyzed by ammonia-oxidizing bacteria and heterotrophic denitrifiers. Low dissolved oxygen, high nitrite accumulation, change in optimal pH or temperature, fluctuation in C/N ratio, short solid retention time and non-availability of Cu ions were responsible for higher N2O leakage. Regulation of enzyme metabolic pathways involved in N2O production and reduction has also been reviewed. Sequential bioreactors, bioscrubbers, membrane biofilters usage have helped microbial nitrification- denitrification processes in succumbing N2O production in wastewater treatment plants. Reduction of N2O negativity has been studied through its valorization for the formation of value added products such as biopolymers has led to biorefinery approaches as an upcoming mitigation strategy.

» Author: Indu Shekhar Thakur, Kristina Medhi

» Reference: 10.1016/j.biortech.2019.03.069

» Publication Date: 14/03/2019

» More Information

« Go to Technological Watch




This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement Nº 690103

               

Licencia de Creative Commons
URBANREC Guidelines by URBANREC Consortium is licensed under a Creative Commons Reconocimiento-NonComercial-NoDerivatives 4.0 Internacional License.
Puede hallar permisos más allá de los concedidos con esta licencia en www.aimplas.net