NEWSLETTER SUBSCRIBE

PATENTS
 

TECHNICAL ARTICLES

LAWS
 

EVENTS
 

OFFERS & DEMANDS

STANDARDS
 

GRANTS
 

NEWS
 

Quality Improvement of Few-Layers Defective Graphene from Biomass and Application for H2 Generation

Pyrolysis of filmogenic natural polymers gives rise to the formation of films of few-layers defective, undoped, and doped graphenes with low electrical conductivity (3000 to 5000 ?/sq). For the sake of valorization of biomass wastes, it would be of interest to decrease the density of structural defects in order to increase the conductivity of the resulting few-layers graphene samples. In the present study, analytical and spectroscopic evidence is provided showing that by performing the pyrolysis at the optimal temperature (1100 °C), under a low percentage of H2, a significant decrease in the density of defects related to the presence of residual oxygen can be achieved. This improvement in the quality of the resulting few-layers defective graphene is reflected in a decrease by a factor of about 3 or 5 for alginic acid and chitosan, respectively, of the electrical resistance. Under optimal conditions, few-layers defective graphene films with a resistance of 1000 ? /sq were achieved. The electrode made of high-quality graphene prepared at 1100 °C under Ar/H2 achieved a H2 production of 3.62 µmol with a positive applied bias of 1.1 V under LED illumination for 16 h.

» Author: Jinbao He

» Reference: doi: 10.3390/nano9060895

» Publication Date: 19/06/2019

» More Information

« Go to Technological Watch




This project has received funding from the European Union's Horizon 2020 research and innovation program under grant agreement Nº 690103

               

Licencia de Creative Commons
URBANREC Guidelines by URBANREC Consortium is licensed under a Creative Commons Reconocimiento-NonComercial-NoDerivatives 4.0 Internacional License.
Puede hallar permisos más allá de los concedidos con esta licencia en www.aimplas.net